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Spin fluctuations and superconducting states in the 
Hubbard model with a strong Coulomb repulsion 

Yu A Izyumov and B M Letfulov 
Institute of Metal Physics, Urd Division of the USSR Academy of Sciences, 
62M19Sverdlovsk GSP-170. USSR 

Received 5 October 1990 

Abstract. In the three-dimensional Hubbard model with a strong Coulomb interaction 
(U + r )  ((&I) model), the influence ofspin fluctuations on the formationof asuperconducting 
state is investigated. The system’s magnetic susceptibility is calculated in terms of the 
generalized random-phase approximation, using the diagram technique for Hubbard oper- 
tors. We find the magnetic phase transition iineson the (f/U, n )  plane, wheren is the electron 
concentration. Equationssimilar to thoseinthe strong-couplingtheow for asuperconductor 
in the (r-l) model are derived taking into amount the spin fluctuations. Equations are 
obtained for the superconducting transition temperatures T. for the order parameter of s 
and d symmetries. Spin fluctuations are shown to suppress the superconductivity near the 
ferromagnetic instability of the paramagnetic phase for both s and d states. Near the 
antiferromagnetic instability, a sufficient enhancement of T, is possible. 

1. Introduction 

Quests for non-phonon mechanisms of superconductivity in connection with the dis- 
covery of high- superconductors have stimulated intense research into the mechanisms 
of electron pairing via spin fluctuations in metais. An interaciioii between the electronic 
and magnetic degrees of freedom in metallic systems with long-range magnetic order or 
under conditions close to magnetic ordering is usually studied in terms of the one-band 
Hubbard model [l]. The model’s Hamiltonian contains only two parameters, namely 
the matrix element t of electron transfer from site to site, and the value of Coulomb 
repulsion Uon one site. In two limitingcases-weak (U Q t) and strong (U  t) Coulomb 
interactions-the exploration is possible by applying perturbation theory. 

Investigations of electron pairing via spin fluctuations date back to Berk and 
Schrieffer [2] who analysed it in the U Q t regime. They showed that the electron 
interaction through spin fluctuations for a Cooper-pair singlet near the ferromagnetic 
instability of a metal caused a repulsion. This conclusion was confirmed later by Scala- 
pino, Loh and Hirsch [3] for the s and d states of the order parameter. It was also shown 
in [3] that, if the system is near an antiferromagnetic instability, the spin fluctuations for 
the d state may give rise to an attraction between electrons. 

Further investigation of this question is connected mainly with the h i t  of strong 
Coulombcorrelations, U %- t. The point [4] isthat under theseconditionsonecanexclude 
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from consideration states with two electrons on one site and pass over to an effective 
exchange-correlation Hamiltonian with an electron interaction on neighbouring sites 
ofvalueJ = tZ/U(theso-called(1-J)model[5]). Itisintermsofthismodelthatintensive 
searches for pairing correlation mechanisms have been conducted, mainly in two major 
directions. One direction, which is the most powerful approach, explores some novel 
features of statistid mechanics of the two-dimensional Hubbard model that were 
discovered by Anderson [6] (see [7], which reports recent developments in this area). 
The other direction deals with the three-dimensional Hubbard model [8-13]. We con- 
centrate on the latter direction. The purpose of this paper is to study the mechanisms of 
electron pairing via spin fluctuations of a strongly correlated system near a magnetic 
instability, where thespin fluctuationsare especially strong. In order toobtainequations 
similar to those usedinthestandard theoryofstronglycoupledsuperconductors [14,15], 
one needs to exploit a perturbation theory in which the zero approximation contains the 
one-site Coulomb energy and the kinetic energy is taken into account as a perturbation. 
In this case the Hamiltonian is conveniently expressed in terms of Hubbard operators 
[l]; then the corresponding perturbation theory represents the diagram technique for 
Hubbard operators. 

This technique for the general Hubbard model is expoundedin a book [16] (see also 
all the references therein), while for the (t-J) model a very detailed treatment of it is 
provided in our paper [17]. The magneticsusceptibility in the (t-J) model wascalculated 
there in an approximation in which only all the loop diagrams (exactly, the antiparallel 
ladders) for the electron vertex part are taken into account. The summation of this 
diagram is an analogue of the random-phase approximation (RPA), which is known in 
the theory of Fermi systems with a weak Coulomb interaction. Note that for strongly 
correlated systems (U * t) the RPA gives an expression for the magnetic susceptibility. 
This expression includes two contributions: the Pauli contribution with a weak tem- 
perature dependence, and the Curie contribution, which is proportional to 1/T. The 
expression obtained in [17] for the susceptibility is used here in the derivation of 
sopcrcoiductnr equations that take into account the influence of spin fluctuations on 
electron pairing. 

This paper is organized as follows. In section 2 we briefly discuss the principles of the 
diagram technique for the (t-J) model in terms of Hubbard operators, and calculate the 
vertex part for two electrons in the lower Hubbard band. It is shown that divergences 
occur in the Cooper channel, which indicate that the normal phase is unstable with 
respect to the formation of a superconducting order parameter of s and d symmetry. In 
section 3 the diagram technique is generalized in such a way that anomalous averages 
can be taken into account. In the next section, the equations for the matrix Green 
function in the Nambu representation are derived graphically, which correspond to the 
mean-field approximation. The equations for superconducting transition temperatures 
are shown to coincide with the equations that determine the poles of the vertex part in 
the Cooper channel. InsectionS. equationsforasuperconductorarederivedgraphically 
taking into account the system’s dynamic fluctuations and retarding effects. The kernels 
of the integral equations obtained are expressed through the magnetic susceptibility. In 
section 6, the dynamic susceptibility, which we calculated in the generalized random- 
phase approximation (GRPA) in [17],isdiscussedtogetherwithpossible typesofmagnetic 
instability. In section 7 strong-coupling theory equations are solved, which involve this 
dynamicsusceptibility, and the effects of spin fluctuations on T,areexaminedin different 
cases. 
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2. Perturbation theory for the (t-J) model 

In the Hubbard operator representation, the (t-J) model Hamiltonian is written as [12] 

H =  H ,  +A,;. + H ,  (2.1) 

A, = E E.Xy0 HH0 = t E x,.ox:, (2.2) 

Heff  = K t E  (X;+XT+I - XTtX;; , ) .  

where 

IO IAo 

(2.3) 
IA 

Here 1 numbers the lattice sites, A stands for nearest neighbours and U = T , denotes 
spin projections. The operator Bo represents a one-site energy with E,, = - uh/2 - p, 
where p is the system's chemical potential and h is an external magnetic field. PHn is the 
electron hopping energy from site to site, while Herr is the exchange-rrelation energy 
(J interaction). According to perturbation theory, the last two terms should be viewed 
as Hint. In (2.3) the dimensionless parameter K = t/U 4 1 is introduced. 

Thus B includes nine Hubbard operators, 

P, X t +  , x--  (2.4) X+O p+ x-a p- XI- x-+ 
where the first four operators are Fermi-like, X+-  and X-+ are Eose-like and the last 
three operators are diagonal. 

Let us determine two temperature Green functions for electrons and for transverse 
spin components, 

% , ( x , x ' )  = - ( T ( P ( r ) X ? ( r ' ) ) )  (2.5) 

D 1 ( x , x ' )  = - (T(ZT-(t)X;+(r'))) (2.6) 

where all the notations are standard ones [18]. Particularly, X;' ( t )  is the operator 
Xw in the l-?eiseI?herg represe.?t-:kxi ii%h imagiiiary time r; x = ( l ,  r )  IS a four-dimen- 
sional point. 

In order to calculate corrections in power series of Hint, one must use the diagram 
technique for Hubbard operators. A detailed exposition of this technique for a total 
Hubbard Hamiltonian can be found, for example, in [16], and for the (t-J) model in our 
previous paper [17]. 

.- . 

The zero approximation Green function reads 

%O,(X,X') = GO,@ - ~ ' ) ( F p ) o  (2.7) 
0: (x, x') = DO@ - x')(B)-)o (2.8) 

(2.9) 

(2.10) 

iw,) = l/(iwm - h) w. = 2nnT. (2.11) 

where Fd and B+ are linear combinations of diagonal operators: 
p- = x++ - x--  Fd = P + X"" 

and G: and Do are Fermi-like and Bose-Like Green functions of the following form 

G:(k; iwn) = l/(iwn - E,,) w, = (2n + 1)ZT 

Elements of the diagram technique are the Green lines and the interaction lines: 
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GOT=- CO-- DO= --*-- 
J(k)  = ..._....... 

(2.12) 
L -  

k k E(k) = - 
where 

(2.13) 

The Hamiltonian H,nt = + fieE generates a lot of vertices, at which different 
numbers of fermion and boson lines converge. All possible types of vertices for the (i- 
J) model Hamiltonian are enumerated in [17]. Taking into account the subsequent 
concrete approximations, we consider only those vertices that have no boson tines. 
There are only four bare vertices of that type: <=:- = + * 4 - (2.14) 

n 

Here and henceforth the electron Green lines mean electron propagators corresponding 
to thelowertlubbardband, whichare treatedin theHubbard-1 approximation[l]; thus, 
the analytical expressions corresponding to the electron Green lines are 

GO,(k) = l/[iw, -E&)] E&) = (F”O)€(k) + E,. (2.15) 

Here k = (k, iw.) is a four-momentum. 
In (171, the Green function (2.6) for the transverse spin components (dynamic 

susceptibility) was calculated in an approximation that corresponds to the summation 
of diagrams with antiparallel ladders. All of these diagrams are taken into account by 
the Bethe-Salpeter equation for the electron four-leg diagram: 

3zE=-n+m (2.16) 

We have already shown (see section 6 in [17] that instabilities with respect to magnetic 
ordering may occur in this particle-hole channel. 

We now consider a four-leg diagram in the particle-particle channel, having defined 
this diagram by a Bethe-Salpeter equation of the following type: 

x=x+m. (2.17) 

where tbe bare vertex consisting of graphs (2.14) must be written as: a = + * ~x * T ( 2 . 1 8 )  A 

We introduce the analytical notation for the vertex part 

(2.19) 

and thus the q have the meaning of the total four-momentum of colliding particles. The 

w’ = r,(k,g - k; 4 - k‘,  k’) ~ ~~~ 

q - k  q-k’ 
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Cooper channel equation (2.17) (i.e. with q = 0) is not diilicult to solve. For a simple 
cubiclattice, the solution has the form 

r c ( k , - k ; - k ‘ , k ’ ) = 4 t C ( l  + ~ c o s k , ) A , ~ c o s k ;  (2.20) 
us 

where 

and F, K, and K2 are determined by the relations 

cos k, 
tanh[E(k)/Z T ]  fl] K2 =$? [cos’ cos k, k, cos k, } E(k) 

Here 

E(k)  = (1 - n/2)s(k) -.U 

(2.22) 

is the electron energy in the lower Hubbard band in the paramagnetic phase of a metal 
(see the expression for E#) in (2.15)). 

Thepolesofthevertexpart (2.20)determine the temperature T,at whichthenormal 
phase of a metal loses stability. The poles are found from the equations 

(2.24) 

(2.25) 

which determine the stability boundaries with respect to the occurrence of the s and d 
symmetry order parameters, respectively. Here 

y(k) = cos k, + cos k, + COS k,. (2.26) 

Note that in the limit U- m, equation (2.24) goes into the equation obtained for the 
first time byZaitsevandIvanov[S, 91, whointerpreted T,asasuperconducting transition 
temperature and called the electron pairing mechanism coming from f?ho a kinematic 
mechanism. Further investigation has shown, however, that the energy of a phase with 
spontaneously broken symmetry is higher than that of a normal phase, so the kinematic 
mechanism cannot give rise to a superconducting state [13]. But in equation (2.25) for 
the d symmetry of theorder parameter the kinematic interaction disappears and contains 
the contribution of HcE only. This circumstance was noted for the first time in [12]. 

Since the kinematic mechanism does not form a superconducting state, we shall in 
the following take into account the perturbation theory of the J interaction only. The 
role of fib reduces to forming electron propagators and will be taken into account in 
fullmeasurewhenweallowforthespinfluctuations,i.e. in thecalculationofthesystem’s 
magnetic susceptibility [17]. 
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3. Perturbation theory with anomalous average5 

Yu A Izyumou and B M LeIfuloo 

The superconducting order parameter in the (t-J) model can be easily introduced with 
the help of the Nambu representation. We consider the four-component column and 
row 

*= @ = ( X I 0  x-0 xo+ xo-) (3.1) 

andcombine them into the Green function 

% ( x , x ' )  = - (T($%x)$(x9)). (3.2) 

Wick'stheorem forHubbard operators [16] exploits theideaofapairingoftwooperators 
under the symbol of averaging, the first operator being a creation operator and the other 
an annihilation operator. 

In the matrix @ ( X ) $ ( X ' ) ,  we can separate out pairings that are normal ones: 

Xo"(x)X@(x') = - G:(x-x')F"O(x') Xo"(x)Xa(x') = - G:(x -x'"''(x'). 
U U (3.3) 

In addition to these pairings, we need to take into account thc anomalous pairing of two 
annihilation or two creation operators; for example, 

~ ' ( ~ ) x O " I ~ ' )  - Fo0(x - x')F"O(x') - F,.+(x - ~')X'''(X'). (3.4) 
U 

In relations (3.3) and (3.4), the quantities F"o(x) and Xeu(x) are also operators and 
tskc pa:. irr h i h e r  pairings. The entire set of relations of type (3.3) and (3.4) may be 
expressed in matrix form: 

where the indices (I and (I' number the components in the Nambu columns and rows, 
andg" and B are 4 x 4 matrices: 

Each element in the matrix go depends on the argument x - x' ; G:(x - x ' )  corresponds 
to the Green function (2.15), and G : ( x  - x ' )  = - G:(x - x' ) .  The quantity FOG, rep- 
resents the anomalous Green function and must be determined from the self-consistency 
equations. 
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A.:.- A*:- -+:.-c h 6 

Figure 1. 

Equation (3.5) determines the pairing of Fermi-Like operators bemeen each other. 
The pairing of Fermi-like operators with Bose-like operators can be determined 
similarly. The complete set of these pairings is expressed by the matrix equality 

(3.7) 

Here p’ are numerical 4 x 4 matrices: 

- 1 0 0 0  0 0 0 0  0 - 1  0 0 

E + +  = ( 0  0 0 
0 0 0 0  0 o) ;+j0 0 0 0 0 0  0 0 0 1 0  

0 0 0 0  0 0 0 1  0 0 1 0  

(3.8) 
(a matrix E-+ is Hermitian-conjugate to  E + - ) .  

other and also with diagonal operators. We have 
In addition, we write formulae for the pairing of Bose-like operators between each 

x+-(x)x-+(x’) = - D O ( X  - x’ )B+- (x ’ )  
U 

l--d 

U 

(3.9) 

(3.10) 

(3.11) 

In the last relation, @,e. is the diagonal part of the matrix bee, determined in (3.6) and 
qna. is a diagonal matrix: 

(3.12) 

Thus, in calculating the perturbation theory series in powers of & for different 
Green functions, a diagram technique arises, whose possible vertices are all presented 
in figure 1. 

The full l i e  with the arrow represents the matrix Green function go from (3.6), the 
broken line the boson Green function Do, and the dotted line the J interaction (in 
keeping with the rules (2.12)). In writing an analytical expression corresponding to a 
diagram, it isnecessary to write for eachvertex the corresponding matrix, E+-, E?, E++ 
or E - - ,  As is clear from the Hamiltonian fieE (2.3), the dotted line can connect vertices 

X+-(x lB+-(x’ )  = 2D0(x - x ‘ ) X + - ( x ’ )  

x + - ( x ) & * ( x ~ )  = P ( X  - x‘)q&X+-(x’) .  

qee. = diag(1, -1,1, -1). 



5380 

(- +) with (+ -) and (+ +) with (- -) and the diagram signs depend on the number of 
lines of both types. 

Yu A Izyumou and B M Letfulov 

4. The mean-field approximation 

Using the graphs depicted in figure 1, one can readily construct graphical series for the 
electron Green function. Of the first-ordergraphs, we take those which contain no boson 
lines. Evidently, there are four suchgraphs. If we replace thezero-approximation Green 
line (corresponding to the propagator in the lower Hubbard band) by a thick line, then 
we obtain a self-consistent equation for the electron Green function 

: . .  I *.. 
- = + .  . t - :  - ,  - _ .  ....... ..... 

- - ._ _* .I * _  ...... ....... (4.1) . .  
~ - .I < ,  _ _  ~ 1 . -  

Obviously, this equation corresponds to the mean-field approximation. 

matrix equation, 
In the momentum representation, this graphical equation corresponds to a 4 X 4 

g(k; iw.) =go& in,,) +go&; io.) &(k; io,)g(k; io.) (4.2) 

where 

- e + - g ( k , ;  iwnl)E-+ - g-+g(kl; iwn,)5'-]. (4.3) 

The off-diagonal matrix elements of the zero-approximation Green function go in (4.2) 
are equal to zero and the diagonal elements are (see formula (3.6)) 

Go(k; iw,) = l/[iw. - E(k)] Go& iw,) = l/[iw,, + E@)] .  

We denote the matrix element of the Green functiongjk; iw,) by the syiiibo! g&; is"). 
(a, B = 1,2,3,4).  Then, using the self-consistent equations (4.2) and (4.3), we can, 
readily set up a closed equation for the quantity 

1 
N k ~ n ~  

~ ( k )  = - 2 I(k-kl)[gu(kl;iw,,)-g14(kl;iw.,)I 

which isasuperconductingorderparameter. Thisequation hasthe formofagapequation 
of the Bardeen-Cooper-Schrieffer (BCS) theory with the matrix element depending on 
momenta: 

(4.4) 

where 

f ( k )  = [E2(k)  + lA(k)l*]'". (4.5) 
Thus, indeed, equation (4.1) really corresponds to the mean-field approximation. 
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From this, one should expect that equation (4.4) linearized with respect to A(k)  should 
determine the superconducting transition temperatures coinciding with the equations 
(2.24) and (2 .25 )  for the vertex part poles in the Cooper channel [18]. In fact, owing to 
the factorization of the kernel 

J(k - R,) = 2 K f  (cos k, cos k,, + sink, sin klm) (4.6) 
.?=x.,,2 

(forthecaseofthe simplecubic(sc)lattice) theintegrallinearizedequation(4.4) reduces 
to a system of six linear algebraic equations. The conditions for these equations to have 
non-trivial solutions are the equations 

1 tanh[E(k)/2TC] 
E(k) 

1 = 2Kf  &(k) 
1 

(4.7) 

which determine the transition temperatures T,. Here the V I  are the basis functions of 
the irreducible representations of the crystal's cubicgroup. They correspond to s, p and 
d type symmetries: 

W , ( k )  = ( l / d ) ( c o s  k, + cos k, + cos k,) 

Wp, (k) = sink, w,, (k) = sin k, W,,(k) = sink, (4.8) 

Wdl(k) = ( l /G)(cos k, -COS k,) W d Z ( k ) = ( l / V Q ( ~ ~ ~ k x + ~ ~ ~ k y - 2 ~ ~ ~ k z ) .  

These functions are constructed on the states within the fist coordination sphere (the 
number of nearest neighbours Z = 6) and take into account the necessary degeneration. 
Equation (4.7) together with (4.8) coincides formally with the equations that hold 
in resonating valence bond theory [S, 61. The dependence on the order parameter 
momentum is determined by the basis function (4.8) according to the relation 

AAk) = W i ( W v  I = s, p, d. (4.9) 

Since the function %(k) is odd, the correspondingsuperconductingorder parameter 
is a triplet, while for sand d symmetry it is a singlet. 

iuumericai soiution of equation (4.7) for a sc lattice shows that T, is very small for s 
symmetry and is <W5 x 2t, while ford symmetry it is sufficiently large and can reach 
the value T, = x 2t. 

5. Allowance for spin fluctuations: strong-coupling theory equations 

The graphical derivation of the mean-field equations provides a basis for including 
fluctuations into the theory. For this purpose, we introduce the thickening of the 
interactionlinesin thegraphs(4. l), usingtheestablished rulesof the diagram technique. 
Thus we represent the self-energy part as 

.:::::.. *.**.. . .. . .>. ..y.-.*... - * . (5.1) .*::::.. :: ..* .* .. 
= =  U _. . I  - *  6- I.. _I I f  _ _  

Here the thick dotted line represents two types of effective interaction, which can be 
depicted graphically as 
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.......... 

J ,  e -.+. ......................... @@. ..... 
(5.2) 

1-1 

1.01 

* -  

Jl, 3 ........... ............................ .... *. _ _  
where the shaded objects are the following Green functions: 

@@ = D, - ( T ( x + - x - + ) )  (5.3) (.-I [ -+I 

As is clear from the definition (2.6), D, is a Green function of the transverse spin 
components; D+ is expressed via thedensity-density Green function, because, accord- 
ing to (2.9) 

F O O = X W + X m = l - n ,  (5.5) 
with n ,  and n being the operators of the number of electron states on a site with a 
definite spin projection. 

Explicit expressionsfor the Green functions D,(k; iw.) and Dt-(k; iw.) will be given 
in the next section. Now we write the analytical form of equation (5.1). According to 
the diagram technique rules formulated in section 3, 

Z(k)  = 
1 

[ - J l ( k -  k , )5-+g(k i )E+-  - J  I (k  - ki ) E  +-g(ki  )E-' 
X i  

+ Jll(k- k , )E++gW,)E--  + J l l ( k - k i ) ~ - - g ( k i ) E t t l .  (5.6) 
Formally, this equation is of the same type as that in the theory of strongly coupled 
superconductors [14, 151; therefore, in constructing the theory, we shall use known 
methods. 

First, we use the spectral representation for the electron Green function g(k)  and for 
the functions J ,  andJII: 

Here the discrete frequency w, is odd in the first integral and even in the second integral. 
These relationsenableus toperform asummationoverthe frequencies on, on the right- 
hand side of equation (5.6) and then to pass from the temperature Green function 
g(k; iwn1)  to the retarding function g(k; w )  with the help of the analytical continuation 
ion- w + is ,  and the expression for the spectral density 

a(k, 2) = - 2 Im g(k; 2). 

Then we pass over to the following expression for 2(k 0): 

tanh(z'/2T) + coth(z/2T) 
- k i ;  z)E-' w - z - z' + i s  

x Img(kl;z')Et- - b, (k ,  - k; -z)E+- 

X Img(kl;z')Et- - b,l(k - kl;z)Etf 
X Img(k , ;r ' )g- -  + b&kl - k; - z )c - -  Img(k,;z')E++]. (5.8) 
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The quantity X is a 4 X 4 matrix, which we derive from the following expansion in Pauli 
matricess,(a= 0,1,2,3): 

X(k) = [l - Z(k)]w~o X ZO + e(k)r, X 5 0  - q(k)r2 X r2. (5.9) 

The matrix equation (5.8) splits into the following system of equationsfor the quantities 
Z,Oandp:  

z'Z(kl; 2') 

D(ki ; 2') 
(1 - Z(k; w)]w - k,; wz')  Im (5.10) 

(5.11) 

where 

D(k; 0) = w2Z2(k; w )  - [E(k) + B(k ;  w)I2  - q2(k; U). (5.13) 

This is a system of coupled non-linear integral equations with the kernels 

cs dz tanh(z'/2T) + coth(z/2T) 
XL,ll(k - k'; wz') = - b&-k';z). (5.14) 2n w - z - z ' + i h  

In the standard superconducting theory, the quantity B(k) is usually neglected in the 
equations for Z(k) and q(k), their kernels being averaged over the momenta band k l  
lying on the Fermi surface. After that, the integration over momentum k, reduces to an 
integration over the electron energy E(kl), and tile equations hecome integrals only 
over frequency. Such an approximation is possible if the kernels depend weakly on the 
wavevector direction. This is not so in our case because the quantities J,(k - k,) and 
J,l(k - k,)dependgreatlyon thevectork - kl, andit isimpossibletopassfromintegration 
over the three-dimensional vector kl to integration over the one-dimensional variable 
E(k,). Thus, equations (5.10)-(5.12) remain integral over frequency z' and momentum 
k, . 

In order to get analytical results, we pass to the weak-coupling limit. In this case, T, 
must be much less than the limiting frequency w, of the spectrum of the collective modes 
determined by the poles of the functionJ,,li (k; w ) .  In  this situation, the kernels (5.14) 
can be approximated thus 

(5.15) YLL,ll(k - k'; wz' )  = - hr.ll(k - k') tanh(z'l2T) 

where 

1 " d z  
hl, l l(k-k')= - ~ 1  - b L , l i ( k - k ' ; z ) = K e J , , , ( k - k ' ; O ) .  (5.16) 

A(k) for the order parameter ceases to 

Z -" 

Then Z(k) -+ 1 and the function q ( k ;  w )  
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depend on frequency, and equation (5.12) reduces to a BCS theory equation with the 
matrix element depending on momenta: 

Yu A Izyumov and B M Letfulov 

(5.17) 

where 

V(k)  =$ReJ,(k;O) + $ReJll(k;O). (5.18) 

Now the problem reduces to one of calculating the value of V(k) 

6. Calculation of an effective pairing interaction 

According to the graphical definitions (5.1), the effective interactions J ,  and Jl, are 
expressed via two Green functions, D ,  and D++: 

J , ( k )  = J ( k )  + J 2 ( k ) D l ( k )  Jli(k) = J(k) + J Z ( k ) D + - ( k ) .  (6.1) 
The Green function of the transverse spin components DL, defined by relation (5.3), 

was calculated in our previous paper [17] with the help of the GRPA: 

where 

X o ( W  = (nn0/2T)6,",0 - W). (6.3) 
The bare dynamic susceptibility xo(k)  (after the analytical continuation iw, + w + is) 
simultaneously displays features of localized and itinerant models. The expression (6.2) 
itself is the system's dynamic susceptibility in the paramagnetic phase of a metal. The 
result (6.2) can be considered as a generalization of the known result of the R!.A. in the 
r e g "  U 4 t (191 for the regime U %- f. 

The quantities n, Q, A and Q1 denote four types of loops that appear in the graphical 
series generated by equation (2.17): 

8 A(k)  = 0 Q ( k )  = 

These loops are determined by the expressions 

(6.5) f[W, -k)l -f[W1)1 
iw, + E ( k ,  - k )  -E(k , )  

where f ( E )  is the Fermi distribution function. In the formula (6.3), nu is a parameter 
determined by the formula 
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This parameter increases sharply from 0 to 1 if the chemical potential reverses sign, i.e. 
if the electron concentration n is varied. In order to calculate the value of D+-(k ) ,  it is 
convenient to introduce the density-density Green function 

D"(x, x ' )  = (T(N,(T)N,<(r'))) (6.7) 

where N, = FT0 + Fro. In the same GRPA as that used in order to derive the expression 
(6.2), we find 

Now it is easy to obtain expressions for the functions D, and Dt- via the dynamic 
magnetic susceptibility ~ ( k )  and the dielectric susceptibility xN(k):  

D, (k)  = -,y(k) D+-(k )  = -$x(k)+$r"(k).  (6.10) 

Finally, using the relations (5.18), (6.1) and (6.10), we obtain the final expression 

V(k)  =J(k)-%I*(k)  Re,y(k;O)-&l*(k)Re~N(k;O).  (6.11) 

This must be substituted into equation (5.17) for the superconducting order parameter. 
We quote the necessary information, obtained in [17], about the magnetic sus- 

ceptibility. The poles of the function x(k;  0) determine the stability boundary of the 
paramagnetic phase with respect to magnetic ordering: ferromagnetic state (F) with 
k = 0 and antiferromagnetic state (A) with k = (n, n, n)/a. The phase diagram for 
the magnetic phases was constructed on the (K, n) plane 1171. It is reproduced in figure 
2 for the sc lattice. 

for the effective pairing interaction 
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Magnetic phases occur mainly in the concentration interval 3 < n < 1. The critical 
concentration n, = 8 corresponds to sign reversal of the chemical potential, thus T = 0 
and n > n,. In the shaded region of the diagram, the system’s magnetic states are 
unknown. It may be a heterogeneous phase consistirig of ferro- and antiferromagnetic 
phase regions, as was shown, for example, in the limit of small hole concentrations, 
(1 - n )  4 1. 

The formula (6.2) for the magnetic susceptibility is valid in a wide concentration 
interval; the only exceptions are the vicinities of n = 0 and n = 1, where one must use 
the gas approximation for electrons or holes. 

We note that near the intercept of the boundary lines of the A and F phases (for the 
sc lattice, the point of intersection, n, is 0.91), another magnetic phase can form, which 
is neilher ferromagnetic nor antiferrnmagnetic. Since the problem of two interacting 
order parameters was not considered, we exclude from consideration the vicinity of this 
point. Thus, the right-hand boundary of the shaded region of the diagram determines 
the conditional boundary of validity of the expression (6.2). 

With T = 0 and 1 > 0, the localized contribution to the bare susceptibility xo(k) in 
(6.3) predominates, and the formula (6.2) results in the following expression for the 
static magnetic susceptibility: 

(6.12) 
Near the ferromagnetic instability, the main contribution is made by long-wave fluc- 
tuations, and (6.12) can be written as 

%(k; 0) l / ( a F  + PFk2) LYF = @(O; 0) + J(0)  (6.13) 
where oc, > 0, PF > 0 and eF is small. Near the antiferromagnetic instability, 

%(k; 0) = + P A ( k  - kO)zl ffA = @(IC,; 0) + J(k,). (6.14) 
The last two expressions determine the characteristic sizes k, and kmA of the fluctuation 
distribution in k-space with 

k m  = (@F/PF)” kmA = (~A/PA)”’ .  (6.15) 
An investigation of the dielectric susceptibility xN(k) ,  determined in (6.8). shows 

(6.16) 
The existence of this pole indicates the instability of the initial phase with respect to 

the formation of charge density waves. However, it is clear from (6.16) that the line of 
this instability on the phase diagram (K, n) (see [17]) lies outside the concentration 
interval we study, so we can neglect the last term in (6.11). Thus, the first term there 
takes into account the mean-field effects while the second term takes into account the 
spin fluctuation contribution. We now study the roleof spin fluctuations in the formation 
of the superconducting state. 

7. The role of spin fluctuations in the formation of the superconducting state 

We consider the linearized equation (5.17) for the superconducting order parameter 

x(k;  0) = l/[@(k; 0) + J(k)] .  

that with k = 0 it has no poles. With k = b, a pole occurs when 
n = 0.88 + U. 14 K. 

(7.1) 
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The quantity x(k - k,; 0) has a sharp peak in the vicinity of k - k, = 0 near the ferro- 
magnetic transition and a peak in the vicinity of k - kl = ko near the antiferromagnetic 
transition. The conditions aF = 0 and aA = 0 should determine the Curie and Nee1 
temperatures TK and TN of the magnetic phase transition as functions of the parameters 
Kandn. Asequations (5.17) and (7.1) use the magneticsusceptibility of the paramagnetic 
phase, they are valid for those regions of (K, n, 7) parameter space where T exceeds 
the magnetic transition temperature; thus, the T, that occur owing to the correlation 
mechanismmustsatisfytheconduction T, > T,(or TN). Forfurtheranalyses, weassume 
this condition to be valid. 

In order to reveal the qualitative role of the fluctuation term in equation (7.1), we 
approximate ~ ( k ;  0) by a narrow rectanguiar peak ol' width 2k, :i:h cen:re Et !i = 0 if 
the system lies near the ferromagnetic transition, and by a peak of width 2k, with 
centre at k = ko if the system lies near the antiferromagnetic transition. The quantities 
k,and kmA areviewedassmall asdesired, inorder to neglecl the momentumdependence 
ofJ2(k - kl)inthesewndtermin(7.1).Thisispossiblebecausethequantityx(k - k,; 0) 
determines, in fact, the momentum distribution in space. So we can bring the quantity 
J*(k - k,) outside of the summation for this quantity to have a zero argument. The result 
is an integral equation with a fluctuation term whose kernel is localized in k-space. 

We start by examiningthecase where thesystem is near the ferromagneticinstability. 
In the second term in (7.1), the main contribution to the sum over kl  comes from the 
narrow shell near the Fermisurface with width 2k,. In thissituation, taking into account 
thekernelJ(k - k,)factorizationforthesclattice(see (4.6))in thefirst term,theintegral 
equation (7.1) can be reduced approximately to a system of algebraic equations. To this 
end, we rewrite (7.1) as 

A(k) = 2 ~ t  cos kg AB - $(K~z/LY~)B 
B 

where the notations are 

(7.2) 

(7.3) 

The p le over the last sum means summation over the narrow I :I1 near the Fermi 
surface of width 2k,. Excluding the quantity 5 in (7.2), we obtain the following system 
of equations for A,: 

Here the following notations are introduced: 
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Equating to zero the determinant of the system (7.5) leads to two equations for T, for s 
and d symmetries of the order parameter. In the case of s symmetry the equation reads 

Yu A Izyumov and B M Letfuloo 

where 

(7.8) 

The equation for T, for d symmetry coincides with equation (4.7) of the mean-field 
approximation, because the fluctuation contributions cancel niit in this ca.se.. This result 
for the d symmetry is a consequence of the fact that the magnetic susceptibility in the 
second term of (7.1) is approximated by a very narrow peak. 

> 0; thus, the factor vg, which defines the 
intensity of the fluctuation contribution to the pairing interaction, is also positive. It is 
clear from equation (7.8) that fluctuations suppress superconductivity. As the ferro- 
magnetic transition is approached aF+ 0 and wI increases, but the increase of U, is 
limited by the denominator in the expression (7.9). In the limit crF+ 0, vg  reaches a 
maximum value: 

(7.10) 

The quantities 3 and % are positive with 

Y s m  = 5/% = ($2 - 1)/(1 - n/Z). 
To obtain the last expression, we use the relations 

in which P"(E)  is the electron density of states in the bare band, iF = ~ ~ ( 1  - n/Z)-' ,  and 
the Fermi energy [8] is 

E F  = IW(ib - 1) (7.12) 
where W = 2zt is the width ofthe bare band. In the concentration interval 3 < n < 1 with 
EF > 0, vJmlX varies from 0 to 1. 

We now consider the system near the antiferromagnetic transition, when ~ ( k ;  0) has 
a sharp maximum in the vicinity of k = ko. Since the susceptibility here is centred at the 
point k,, we arrive at the result that if the momentum kin the second term of equation 
!7.1!!ierin!he0arr=.~!~~~iiiear iheFermisurfaceofwidthZk,,, thenthislayercontains 
the vector k, + k, rather than the momentum k,, in contrast with the ferromagnetic 
instability case. Put another way, the vector k l  lies in the layer near the Fermi surface, 
which is displaced by the vector ko. In the final analysis, this leads to sign reversal of the 
Buctuation term in the equation for T,: 

% = 4 t P o ( P ~ )  In(2yo,/nTc) 3 = @FPo(EF)  ln(2yw,/nTc) (7.11) 

The fluctuation contribution intensity is determined by the factor 

where 

(7.13) 

(7.14) 

(7.15) 

W e  obtain a similar result for e. The prime means that the summation in (7.15) is 
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performed over a narrow layer near the Fermi energy of width 2kmA. Integrating over 
energy, we find 

(7.16) 

These formulae are obtained in a model with aconstant density of states. & ( E )  = 1/W. 
The quantity w, = vFkmA is the limiting frequency of the spin fluctuation spectrum (oF 
is the electron velocity on the Fermi surface). In deriving formulae (7.16), we assume 
that E~ S w,. 

We see that the antiferromagnetic fluctuations bring about an additional electron 
attraction; however, the fluctuation contribution intensity v p  is also limited, because of 
the denominator t? the expressix (7.14). From (7.14) and (7. lo), we a x k e  at the result 
that 

= 4[8n - ~ ) E ~ / w ,  (7.17) 
so v:,~ lies in the interval from 0 to 2eF/wm. 

With the d symmetry of the order parameter, the fluctuation contribution in the 
equation for T, cancels out, too, just as in the case of an antiferromagnetic instability. 

Equations (7.8) and (7.13) can be explicitly solved for T, if the rectangular band 
model with constant density of states is used. In the logarithmic approximation, we have 

(7.18) 

The '-'sign in the denominator corresponds to ferromagnetic instability, the '+' sign 
to antiferromagnetic instability. Near the left-hand and right-hand boundaries of the 
concentrationintervaIZ < n < 1, T,issmall; theexpression(7.18) hasamaximuminside 
this interval. In the physically interesting case of the antiferromagnetic instability, T, 
may be sufficiently great inside this interval, because of the large pre-exponential factor. 
However, thefluctuationpartofthe pairinginteractioncannot begreaterthanl, because 
of the small parameter K. 

It is clear from the formula (7.18) that T, in a narrow concentration interval is very 
sensitive to the quantity vs and can reach valuesof to 10-2)W, with the valuesof 
vs not exceeding 1. Near the ferromagnetic instability, T, is several orders of magnitude 
lower. The formuia (7.X) de5i;cs:le !ende!?cy of T, to increaqe sharply with increzslng 
concentration n and fluctuation contribution intensity v,. 

Recall also that the formula (7.18) for T, does not take into account the contribution 
of the kinematic mechanism [8]. The authors of [8] think that this contribution is 
dominant (only for the s symmetry order parameter; in the case of d symmetry, the 
fluctuation contribution cancels out in the equation for Tc). In our view, the kinematic 
mechanism is overestimated in [8 ,9 ] ,  because these authors did not take into account 
the fluctuation effect in the consideration of the kinematic term in perturbation theory. 
It is known that the Hubbard model in the Limit U+ m indicates strong tendencies for 
ferromagnetic ordering, tendencies that must weaken the pairing effect of the kinematic 
mechanism. Allowance for the correspondin6 fluctuation corrections (at least in the 
limit U+ m), which are contained in the part Hb of the Hamiltonian, is a separate, very 
complicated, problem of the combetition between the ferromagnetic and supercon- 
ducting order parameters. 

Now we pass on to the case of a d  symmetry order parameter. Since in the Limit of a 
verynarrowpeak in& 0), the fluctuationcontribution hascancelledout in theequation 
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for Tc, we need to weaken this condition and thus preserve the momentum dependence 
of the quantity Jz(k - k,) in the next term of equation (7.1). For the sc lattice, this 
leads to the following approximate equation for T. (in the case of antiferromagnetic 
instability): 

YU A Izyumov nnd BM Lerfulov 

. .  

The resulting equation contains two parameters characterizing the fluctuation con- 
tribution intensities: 

where 

E(k t ko) = - (1 - n/2)E(k) - p .  (7.21) 

(In the paramagneticphase ofametal, therdimension differsin the basisfunction &(k) 
of the superconducting order parameter.) The summation in (7.20) is limited by the 
layer near the Fermi surface of width 2kmA. The factors cos k ,  Wz(k) can be transformed 
into the product of d symmetry basis functions constructed on sites that follow the first 
coordination sphere. We can pass from equation (7.19) to equation (4.7) by neglecting 
basis functions of the d-like state. 

The calculation of T, from equation (7.19) demands numerical computations, as in 
the case of the mean-field approximation. In such computations, it would certainly be 
better tousethemoregeneralequation(7,l)rather thanequation (7.19), in whichrough 
approximations were made. To us, it was important to solve the question concerning 
the d state in principle and to see that in this case also the spin fluctuations lead to an 
increase of T ,  (vi" > 0 and v\* > 0 with EF > 0). 

8. Conclusions 

Let ussum upsome resultsoftheinvestigation. Incon~ias::=:hP~Zeofa weak Coulomb 
interaction [3], two contributions to the electron pairing interaction arise in the (t-J) 
model. The first contribution is of a statistical nature and is allowed by the mean-field 
approximation. The other contribution is a dynamic one and occurs owing to the 
interaction of electrons with spin fluctuations. In some regions of electron concen- 
trations, the fluctuation contribution may be sufficiently large. It increases sharply near 
the magneticphase transitionsand, in thecase ofaferromagieticinstability,fluctuations 
cause an electron repulsion; in the case of an antiferromagnetic instability, they cause 
an attraction, as was the case in the regime U Q t. 

Although the equations for a superconductor are derived in the spirit of strong- 
coupling theory [14], we consider the weak-coupling limit only in order to obtain 
analytical results, in which the equation for the superconducting order parameter 
reduces to the equation of the BCS theory with a strong momentum dependence of the 
electron pairing matrix element. Within the framework of this approximation, we 
have derived equations and formulae for T,. The general equations obtained for a 
superconductor are in the spirit of the theory of strongly coupled superconductors with 
bare electron-boson vertices. A more accurate equation is 
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for it has exact electron-boson vertices. However, using the above vertices in equation 
(7.1) is a very complicated problem. Generally, a number Qf questions touched upon in 
the paper remain open, because they demand numerical solutions of the equations 
obtained here and in [17]. These aspects include the concentration dependence and the 
value of T, in real cases, where ~ ( k ;  0) cannot be approximated by a napow peak. Other 
problems are the calculation of the Curie temperature TK and the NCel temperature T, 
with respect to the parameters K and n, and a comparison with the values of T,. Only 
such numerical analyses permit one to find such regions on the (K, n) plane where T, 
greatly exceeds TK and TN, and where the deveioped theory can be applied. 

Other important issues in the problem of superconductivity in a strongly correlated 
systeminclude the question about the damping of electronstates formed by the Hubbard- 
1 approximation. In a model with localized magnetic moments (s-d exchange model), 
such damping causes a strong suppression of the magnetic moment in the paramagnetic 
phase of a metal. The problem is to ascertain the role of electron damping due to real 
processes of electron-spin fluctuation interaction in a superconductor with a pairing 
interaction via virtual exchange by spin fiuctuations. The general investigation that we 
havecarriedout in thispapergiveshopefulpredictionsin thequestionofthe possible role 
of spin fluctuations in the formation of high-T, superconductivity in strongly correlated 
systems. 
Note added inproof. Some problems listed in section 8 have been resolved by us and will be published. More 
a m a t e u s e o f  theGnPAapproximationresults in the essentialrenormalizationofthe verticeswhen parameter 
J in leading terms is replaced with f 
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