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Spin fluctuations and superconducting states in the
Hubbard model with a strong Coulomb repulsion

Yu A Izyumov and B M Letfulov

Institute of Metal Physics, Ural Division of the USSR Academy of Sciences,
620219 Sverdlovsk GSP-170, USSR

Received 5 October 1990

Abstract. In the three-dimensional Hubbard model with a strong Coulomb interaction
(U= H{(+-F) model), the influence of spin fluctuations on the formation of a superconducting
state is investigated. The system’s magnetic susceptibility is calculated in terms of the
generalized random-phase approximation, using the diagram technique for Hubbard oper-
tors. We find the magnetic phase transition lines on the (¢/U, n) plane, where n is the electron
concentration. Equations simifar to those in the strong-coupling theory for a superconductor
in the (+J) model are derived taking into account the spin fluctuations, Equations are
obtained for the superconducting transition temperatures T, for the order parameter of s
and d symmetries. Spin fluctuations are shown to suppress the superconductivity near the
ferromagnetic instability of the paramagnetic phase for both s and d states. Near the
antiferromagnetic instability, a sufficient enhancement of T, is possible.

1. Introduction

Quests for non-phonon mechanisms of superconductivity in connection with the dis-
covery of high- 7, superconductors have stimulated intense research into the mechanisms
of electron pairing via spin fluctuations in metais. An interaciion between the electronic
and magnetic degrees of freedom in metallic systems with long-range magnetic order or
under conditions close to magnetic ordering is usually studied in terms of the one-band
Hubbard model [1]. The model’s Hamiltonian contains only two parameters, namely
the matrix element ¢ of electron transfer from site to site, and the value of Coulomb
repulsion Uon one site. In two limiting cases—weak (U < r) and strong (U > {) Coulomb
interactions—the exploration is possible by applying perturbation theory.

Investigations of electron pairing via spin fluctuations date back to Berk and
Schrieffer [2] who analysed it in the U <€t regime. They showed that the electron
interaction through spin fluctuations for a Cooper-pair singlet near the ferromagnetic
instability of a metal caused a repulsion. This conclusion was confirmed later by Scala-
pino, Loh and Hirsch [3] for the s and d states of the order parameter. It was also shown
in [3] that, if the system is near an antiferromagnetic instability, the spin fluctuations for
the d state may give rise to an attraction between electrons.

Further investigation of this question is connected mainly with the limit of strong
Coulomb correlations, I/ > ¢. The point [4]is that under these conditions one can exclude
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from consideration states with two electrons on one site and pass over to an effective
exchange—correlation Hamiltonian with an electron interaction on neighbouring sites
ofvalue J = /U (the so-called (+-J) model [5]). It is in terms of this model that intensive
searches for pairing correlation mechanisms have been conducted, mainly in two major
directions. One direction, which is the most powerful approach, explores some novel
features of statistical mechanics of the two-dimensional Hubbard model that were
discovered by Anderson [6] (see [7], which reports recent developments in this area).
The other direction deals with the three-dimensional Hubbard model [8-13]. We con-
centrate on the latter direction. The purpose of this paper is to study the mechanisms of
electron pairing via spin fluctuations of a strongly correlated system near a magnetic
instability, where the spin fluctuations are especially strong. In order to obtain equations
similar to those used in the standard theory of strongly coupled superconductors [14, 15],
one needs to exploit a perturbation theory in which the zero approximation contains the
one-site Coulomb energy and the kinetic energy is taken into account as a perturbation.
In this case the Hamiltonian is conveniently expressed in terms of Hubbard operators
[1]; then the corresponding perturbation theory represents the diagram technique for
Hubbard operators.

This technique for the general Hubbard model is expounded in a book [16] (see also
all the references therein), while for the (+~J) model a very detailed treatment of it is
provided in our paper [17]. The magnetic susceptibility in the (+-J) model was calculated
there in an approximation in which only all the loop diagrams (exactly, the antiparallel
ladders) for the electron vertex part are taken into account. The summation of this
diagram is an analogue of the random-phase approximation (RPa), which is known in
the theory of Fermi systems with a weak Coulomb interaction. Note that for strongly
correlated systems {U/  ¢) the RPA gives an expression for the magnetic susceptibility.
This expression includes two contributions: the Pauli contribution with a weak tem-
perature dependence, and the Curie contribution, which is proportional to 1/T. The
expression obtained in [17] for the susceptibility is used here in the derivation of
superconductor equations that take into account the influence of spin fluctuations on
electron pairing.

This paper is organized as follows. In section 2 we briefly discuss the principles of the
diagram technique for the (£~} model in terms of Hubbard operators, and calculate the
vertex part for two electrons in the lower Hubbard band. It is shown that divergences
occur in the Cooper channel, which indicate that the normal phase is unstable with
respect to the formation of a superconducting order parameter of s and d symmetry. In
section 3 the diagram technique is generalized in such a way that anomalous averages
can be taken into account. In the next section, the equations for the matrix Green
function in the Nambu representation are derived graphically, which correspond to the
mean-field approximation. The equations for superconducting transition temperatures
are shown to coincide with the equations that determine the poies of the vertex partin
the Cooper channel. Insection 5, equations for a superconductor are derived graphically
taking into account the system’s dynamic fluctuations and retarding effects. The kernels
of the integral equations obtained are expressed through the magnetic susceptibility. In
section 6, the dynamic susceptibility, which we calculated in the generalized random-
phase approximation (GRPA) in [17], is discussed together with possible types of magnetic
instability. In section 7 strong-coupling theory equations are solved, which involve this
dynamicsusceptibility, and the effects of spin fluctuations on T, are examined in different
cases.
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2. Perturbation theory for the (=) model

In the Hubbard operator representation, the () model Hamiltonian is written as [12]

H=Hy+Hy + B (2.1)
where
Hy =2 e, X{" wn = 1 2 XX, (2.2)
lo Ao
Hy = Kr% (X7 " X — X Xna) (2.3)

Here I numbers the lattice sites, A stands for nearest neightoursand o= 1, | denotes
$pin pm]ectlons The operator H, represents a one-site energy with ¢, = — crh/2 i,
where u is the system’s chemical potential and 4 is an external magnetic field. H,y is the
electron hopping energy from site to site, while H.¢ is the exchange—correlation energy
(7 interaction). According to perturbation theory, the last two terms should be viewed
as Hiy. In (2.3) the dimensionless parameter k = ¢/U < 1 is introduced.

Thus H includes nine Hubbard operators,

X+ x% x-0 x0- X+, Xt X0 X+t X 2.4

where the first four operators are Fermi-like, X*~ and X~* are Bose-like and the last
three operators are diagonal.

Let us determine two temperature Green functions for electrons and for transverse
spin components,

G, (x,x") = — (T(XP(D)XP(z"))) (2.5)
D, (x,x"y= ~(T(X} @)X (=) (2.6)

where all the notations are standard ones [18]. Particularly, X3 (7) is the operator
X7 in the Heisenberg representation with imaginary time 7; x = (i, ) is a four-dimen-
sional point.

In order to calculate corrections in power series of H.,., one must use the diagram
technique for Hubbard operators. A detailed exposition of this technique for a total
Hubbard Hamiltonian can be found, for example, in [16], and for the (+/) model in our

previous paper [17].
The zero approximation Green function reads
GY0x, x") = Golx — " WFP ) @7
D (x,x") = D°(x = x'XBF ") (2.8)
where F°* and B*~ are linear combinations of diagonal operators:
Fo = X% 4 xo° BtT = Xt~ X7 (2.9)
and G? and D? are Fermi-like and Bose-like Green functions of the following form
G (k; iw,) = 1/(iw, — £,) w,=2n+ \aT (2.10)
D(k;iw,) = 1/(iw, ~ h) w, =2nxT. (2.11)

Elements of the diagram technique are the Green lines and the interaction lines:
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GDT = e . GOJ. = — D= ——>—-
e(f;:) _ Lk ) (2.12)
where
e(k) = :% gika J(k) = xe(k). (2.13)

The Hamiltonian A, = Hy;, + H.; generates a lot of vertices, at which different
numbers of fermion and boson lines converge. All possible types of vertices for the (-
J) model Hamiltonian are enumerated in [17]. Taking into account the subsequent
concrete approximations, we consider only those vertices that have no boson lines.
There are only four bare vertices of that type:

T2 3 e

Here and henceforth the electron Green lines mean electron propagators corresponding
to the lower Hubbard band, which are treated in the Hubbard-1 approximation [1]; thus,
the analytical expressions corresponding to the electron Green lines are

Gg (k) = 1/[1{"):: - Ea(k)] Ea(k) = (FOG>8(IC) + £,. (215)

Here k = (k, iw,) is a four-momentum.

In [17]. the Green function (2.6) for the transverse spin components (dynamic
susceptibility) was caleulated in an approximation that corresponds to the summation
of diagrams with antiparallel ladders. All of these diagrams are taken into account by
the Bethe-Salpeter equation for the electron four-leg diagram:

—

/R - T T A ew

- — - P 2
- - e

\ ot -

We have already shown (see section 6 in [17] that instabilities with respect to magnetic
ordering may occur in this particle-hole channel.

We now consider a four-leg diagram in the particle-particle channel, having defined
this diagram by a Bethe—Salpeter equation of the following type:

-l Lo —— L— £ e F -

i - 11 - T 1 ¥ @.17)

where the bare vertex consisting of graphs (2.14) must be written as:

TID - N AT T Tew

We introduce the analytical notation for the vertex part

CR IR}

k k'

—D—Vb—_ -_-_’, .
=%&fmykﬂh@:“hm (2.19)
q-k q-k

and thus the ¢ have the meaning of the total four-momentum of colliding particles. The



Spin fluctuations and superconducting states in the Hubbard model 5377

Cooper channel equation (2.17) (i.e. with ¢ = 0) is not difficult to solve. For a simple
cubic lattice, the solution has the form

To(k, ~k; —k', k') = & Ep; (1 + & cos k,)A 45 cos kj (2.20)
where
Ao = (1-2F—xK; —KkK;)0 5 + (F+ kK5){(1 =8 5) 2.21)
(1—-kK| +xK)(1—&xK;—2xK, —3F)
and F, K| and K, are determined by the relations
F cos k,
K = %% cos? k, ————tanh[g((:))/ 27], (2.22)
K, cos k, cosk,
Here
E(k) = (1 - n/2)ek) — u (2.23)

is the electron energy in the lower Hubbard band in the paramagnetic phase of a metal
(see the expression for E (k) in (2.15)).

The poles of the vertex part (2.20) determine the temperature T, at which the normal
phase of a metal loses stability. The poles are found from the equations

1= %’,; [¥() + ey (R)] %‘Eﬂﬂ—‘ (2.24)
1= Kr—- E {cosk, - cosk,)? t_a_nj%g/%ﬂ (2.25)

which determine the stability boundaries with respect to the occurrence of the s and d
symmetry order parameters, respectively. Here

y(k) = cos k, + cos ky + cos k.. {2.26)

Note that in the limit I/ — o, equation (2.24) goes into the equation obtained for the
first time by Zaitsev and Ivanov [8, 9}, who interpreted T as a superconducting transition
temperature and called the electron pairing mechanism coming from H,, a kinematic
mechanism. Further investigation has shown, however, that the energy of a phase with
spontaneously broken symmetry is higher than that of a normal phase, so the kinematic
mechanism cannot give rise to a superconducting state [13]. But in equation (2.25) for
the d symmetry of the order parameter the kinematicinteraction disappears and contains
the contribution of H, only. This circumstance was noted for the first time in [12].

Since the kinematic mechanism does not form a superconducting state, we shall in
the following take into account the perturbation theory of the J interaction only. The
role of Hy, reduces to forming electron propagators and will be taken into account in
full measure when we allow for the spin fluctuations, i.e. in the calculation of the system’s
magnetic susceptibility [17].
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3. Perturbation theory with anomalous averages

The superconducting order parameter in the (+~J) model can be easily introduced with
the help of the Nambu representation. We consider the four-component column and
Tow

X0+
XO_
X+D
X—U

p=(X* X0 x% Xx*) (3.1)

and combine them into the Green function

Qx, x') = = (T@ERPE)). (3.2)

Wick’s theorem for Hubbard operators [ 16] exploits the idea of a pairing of two operators
under the symbol of averaging, the first operator being a creation operator and the other
an annihilation operator.

In the matrix 9(x)y(x’), we can separate out pairings that are normal ones:

X9 (XY= — Gox—x)FP(x')  XP(x)XP(x)= - GY(x —x")X%(x').
) L : (3.3)

In addition to these pairings, we need to take into account the anomalous pairing of two
annihilation or two creation operators; for example,

X0 (x)X09(x") = — Fou(x — xYFO(x") — Fos(x ~ x')X%(x'). (3.4)
l__’.__]
In refations (3.3) and (3.4), the quantities F*°(x) and X°"(x) are also operators and

take part in fuither pairings. The entire set of relations of type (3.3) and (3.4) may be
expressed in matrix form:

ValX) P (X)) = = 2 8%, (r — x)B oo (x') (3.5)

where the indices & and o’ number the components in the Nambu columns and rows,
and g° and B are 4 X 4 matrices:

0 GY F, F L Xt FY 0 0
go — 3 _i T i B= ] (3,6)
Ty Fi, GY O 0 0 F¥ x*
Fi; F{, 0 G, 0 0 X+ FO

Each element in the matrix g° depends on the argument x — x'; G%(x — x') corresponds
to the Green function (2.15), and G%(x — x') = — G%(x — x’). The quantity F,, rep-
resents the anomalous Green function and must be determined from the self-consistency
equations.
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-l:* - - t: fa > -:-. - e .
\‘E
e — —nil ¥ e —pme— - e——
- - - I -
* + /f + -
Figure 1.

Equation (3.5) determines the pairing of Fermi-like operators between each other.
The pairing of Fermi-like operators with Bose-like operators can be determined
similarly. The compiete set of these pairings is expressed by the matrix equality

Ya ()X (x') = 2 8%y (% = XS0 Yy (x'). (3.7)
Here £°° are numerical 4 X 4 matrices:
-1 0 00 0O 000 0-10 0
0 00 0-1 0 0 0 6 0 0
g = g = g =
0 10 0 00 0 0 ¢ 0 0
0 00 0 001 0 610
(3.8)

(a matrix £~ is Hermitian-conjugate to £* 7).
In addition, we write formulae for the pairing of Bose-like operators between each
other and also with diagonal operators. We have .

X ()Xt (x) = — D%x — x}B*(x") (3.9)
L |

X (B (x") =2D%x — x )X+ (x") (3.10)
Lwdd

X+ (x)BY,(x) = D'x — x'Iop X*™(x). (3.11)
L]

In the last relation, B, is the diagonal part of the matrix B, determined in (3.6) and
Yoo 1S a diagonal matrix:

New = diag(l, —1,1, —1). (3.12)

Thus, in calculating the perturbation theory series in powers of Hg for different
Green functions, a diagram technique arises, whose possible vertices are all presented
in figure 1.

The full line with the arrow represents the matrix Green function g° from (3.6}, the
broken line the boson Green function D° and the dotted line the J interaction (in
keeping with the rules (2.12)). In writing an analytical expression corresponding to a
diagram, it is necessary to write for each vertex the corresponding matrix, §*~, &%, E++
or £-~. Asis clear from the Hamiltonian H. (2.3), the dotted line can connect vertices
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(=+) with (+ =) and (+ +) with (——) and the diagram signs depend on the number of
lines of both types.

4, The mean-field approximation

Using the graphs depicted in figure 1, one can readily construct graphical series for the
electron Green function, Of the first-order graphs, we take those which contain no boson
lines. Evidently, there are four such graphs. If we replace the zero-approximation Green
line (corresponding to the propagator in the lower Hubbard band) by a thick line, then
we obtain a self-consistent equation for the electron Green function

anu
SV, Rl

== > A, g s S
._.l'..' o . ) ) (4. 1)
. C. E_Ti_’_| * ;'-TiT: N

o
[ - -

Obviously, this equation corresponds to the mean-field approximation.
In the momentum representation, this graphical equation corresponds to a 4 X 4
matrix equation,

gk iw,) = g°(k; iw,) + g°(k; iw,) Zue (k; iw,)g(k; iw,) 4.2)
where

By (ks 0,) = o 2 Ik =K [E 8k 10,,)7 +57 gk 00, )6

kimy

—E*mglkyyiw, Y57 — E7V gk i, )60 ] (4.3)

The off-diagonal matrix elements of the zero-approximation Green function g°in (4.2)
are equal to zero and the diagonal elements are (see formula (3.6))

G(k; iw,) = 1/[iw, —E®]  G'Ukiw,) = 1/[iw, + E(@)].

We denote the matrix element of the Green function g(%; iw,) by the symbol g.u{k; iw,)
(o, f=1,2,3,4). Then, using the self-consistent equations (4.2) and (4.3), we can .
readily set up a closed equation for the quantity

M) = 5 2 e ko)lg s ) g1l 0,)

whichis asuperconducting order parameter. Thisequation has the formof a gapequation
of the Bardeen-Cooper—Schrieffer (Bcs) theory with the matrix element depending on
momenta:

tanh{£(k,)/27]

Eky) “4)

AW = 3 S k)AGk)

where
L) = [E*(k) + |A(B[P]2, (4.5)
Thus, indeed, equation (4.1) really corresponds to the mean-fieid approximation.
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From this, one should expect that equation (4.4) linearized with respect to A{(k) should
determine the superconducting transition temperatures coinciding with the equations
(2.24) and (2.25) for the vertex part poles in the Cooper channel [18]. In fact, owing to
the factorization of the kernel

J(k— k)= 2Kkt > (cosk, cosk,, +sink, sink,,) (4.6)

a=x,y,2

(for the case of the simple cubic (s¢) lattice) the integral linearized equation (4.4) reduces
to a system of six linear algebraic equations. The conditions for these equations to have
non-trivial solutions are the equations

tanh[E(k)/2T,]

o) (4.7)

1
1= 2kt — 2, y}(k)
N7
which determine the transition temperatures T,. Here the v, are the basis functions of
the irreducible representations of the crystal’s cubic group. They correspond to s, p and
d type symmetries:

P, (k) = (1/V3)(cos k, + cos k, + cos k)
Y, (k) =sink, Yo, (k) =sink, Yp, (k) = sin k, (4.8)
W4, (k) = (1/V2)(cos k, —cos k,,) Y4, (k) = (1/V6)(cos k, +cos k, —2 cos k).

These functions are constructed on the states within the first coordination sphere (the
number of nearest neighbours Z = 6) and take into account the necessary degeneration.
Equation (4.7) together with (4.8) coincides formally with the equations that hold
in resonating valence bond theory [5, 6]. The dependence on the order parameter
momentum is determined by the basis function (4.8) according to the relation

Ar(k) = '!f}[(k)A; = S, P, d. (49)

Since the function y,(k) is odd, the corresponding superconducting order parameter
is a triplet, while for s and d symmetry it is a singlet.

WNumericai soiution of equation (4.7) for a sc lattice shows that T, is very smail for s
symmetry and is <1075 x 2¢, while for d symmetry it is sufficiently large and can reach
the value T, = 1073 x 2¢,

5, Allowance for spin fluctuations: strong-conpling theory equations

The graphical derivation of the mean-field equations provides a basis for including
fluctuations into the theory. For this purpose, we introduce the thickening of the
interaction lines in the graphs (4.1}, using the established rules of the diagram technique.
Thus we represent the self-energy part as

avtg «te, L]
e » - - - »
. Ld . Ll - L]
- . G "
- .
+

S IR L e (5D
Here the thick dotted line represents two types of effective interaction, which can be
depicted graphically as



5382 Yu A Izyumov and B M Letfulov

5.2
j" = *;.::;:::;_-_:_ 2 easresnns + ""i:ﬁ)@:a;"“
where the shaded objects are the following Green functions:
] =D, =—(T(X*X"*) (5.3)
- i+
= D% = (T(FHF%)). (5.9
f+0 {-01

As is clear from the definition (2.6), D, is a Green function of the transverse spin
components; D7~ is expressed via the density—density Green function, because, accord-
ing to {2.9)

FO = X%+ X0 =1 —n, (5.5)

with n; and n| being the operators of the number of electron states on a site with a
definite spin projection.

Explicit expressions for the Green functions D, (k; iw,) and D* = (k; iw,) will be given
in the next section. Now we write the analytical form of equation (5.1). According to
the diagram technique rules formulated in section 3,

] B R

Ik k)ETT gk )ETT + (k= k)ET gk )ETT]. (5.6)

Formally, this equation is of the same type as that in the theory of strongly coupled
superconductors {14, 15]; therefore, in constructing the theory, we shall use known
methods.

First, we use the spectral representation for the electron Green function g{k) and for
the functions J, and Jj;:

a(k z) 7 b_ﬁ Il(k z)

1 o
g(k) =Ef_ dz 7.3(R) ‘zxf dz (5.7)
Here the discrete frequency w, is odd in the first integral and even in the second integral.
These relations enable us to perform a summation over the frequencies ,, on the right-
hand side of equation (5.6) and then to pass from the temperature Green function
g(k; iw,,) to the retarding function g(k; ) with the help of the analytical continuation
iw,— w + 16, and the expression for the spectral density

alk, z) = — 2 Img(k; 2).
Then we pass over to the following expression for Z(k; w):

dz dz’ tanh{z’/2T) + coth(z/2T)
(2)? w—z-2'+ib

2(k; w) = ——E [6,(k —ky; 2)E

* Imglky; 2')E*" —b (k) = k; —2)5%
X Imglhy; 2’ )87 — bylk — ky; 2)E%*
X Img(ky; 2')87" + bylk; — k; —2)E7" Img(ky; 2')E* ] (5.8)
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The quantity £ is a 4 X 4 matrix, which we derive from the following expansion in Pauli
matrices T, (¢ = 0,1, 2, 3):

Z(k) =[1-Z(k)]wry X 79+ 8(k)T3 X Tg — @)1, X T,5. (5.9)

The matrix equation (5.8) splits into the following system of equations for the quantities
Z,@and ¢:

) 1 ! o 2'Z(ky;2")
(- Z(k; “’)]“’“N%“fzn ok~ ko 02) Im e 0 (5.10)
N ' . E(k,) + 8(ks;z")
O(k; w) = Efz Holh ks 02) Im == (5.12)
coy=2> [& 0z’ iy z)) Tm ZEL )
ok w)-NkE1 > k= ks 02') + Hy(k = ky; 02) Im RS (5.12)
where .
D(k; w) = w>Z?(k; w) — [E(k) + 0(k; w)]* — ¢*(k; w). (5.13)
This is a system of coupled non-linear integral equations with the kernels
* dz tanh(z'/2T) + coth(z/2T
Hogk—Kioz)y=-| =25 (2'/27) + coth(z/ Yo (k- s 2). (5.14)

21 o—z-z+ié

In the standard superconducting theory, the quantity 8(k} is usually neglected in the
equations for Z(k) and ¢(k), their kernels being averaged over the momenta k and k,
lying on the Fermi surface. After that, the integration over momentum &, reduces to an
integration over the electron energy E(k;), and the equations become integrals only
over frequency. Such an approximation is possible if the kernels depend weakly on the
wavevector direction. This is not so in our case because the quantities J, (k — k,) and
Jj(k = k;) depend greatly onthe vectork — k,,anditisimpossible to pass fromintegration
over the three-dimensional vector &, to integration over the one-dimensional variable
E(k,). Thus, equations (5.10)-(5.12) remain integral over frequency z’ and momentum
kl .

In order to get analytical results, we pass to the weak-coupling limit. In this case, T,
must be much less than the limiting frequency w,, of the spectrum of the collective modes
determined by the poles of the function 7, ; (k; w). In this situation, the kernels (5.14)
can be approximated thus

%, y(k— k'; 02) = — L, y(k ~ k') tanh(z'/2T) (5.15)
where

1 dz

J.H(k k) 2.75 2 _L"(k k' Z) Refl‘u(k—k",(}). (516)

Then Z(k)— 1 and the function @(k; @) = A(k) for the order parameter ceases to
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depend on frequency, and equation (5.12) reduces to a BCs theory equation with the
matrix element depending on momenta:

1 _ tanh[£(k,)/2T]

A(k) = NEJ Vik kI)A(kl)—~———t(kl) (5.17)
where

V(K) = $ReJ , (k; 0) + : Re Jy(k; 0). (5.18)

Now the problem reduces to one of calculating the value of V(k).

6. Calculation of an effective pairing interaction

According to the graphical definitions {5.1), the effective 1nteract|ons J . and Jj are
expressed via two Green functions, D, and D*:
Jo (k) =JR)+1P(UD (k) Jy(k) =)+ T*(k)D*" (k). (6.1)

The Green function of the transverse spin components D, , defined by relation (5.3),
was calculated in our previous paper [17] with the help of the GRPA:

Xo(k)

D) = ~ A= o)+ re @ (e + 3~ R

(6.2)

where
Xo(k) = (nng/2T)d,, 0 — TI(K). (6.3)

The bare dynamic susceptibility yq(k) (after the analytical continuation iw, — @ + i8)
simultaneously displays features of localized and itinerant models. The expression (6.2)
itself is the system’s dynamic susceptibility in the paramagnetic phase of a metal. The
result (6.2) can be considered as a generalization of the known result of the rpa in the
regune U <€ ¢]19] for the regime U > ¢,

The quantities IT, Q, A and ¢ denote four types of loops that appear in the graphical
series generated by equation (2.17):

m@=<i> CER D

(6.4)
Ak) = C} B(k) = {::"*»
These loops are determined by the expressions
(k) 1
0| _ i | lk) fEG—RI-fEE)] o
Ak) | NG | etk —k) i, + E(ky — &) — E(k;) '
®(k) e(k))e(k, — k)

where f(E) is the Fermi distribution function. In the formula (6.3), n, is a parameter
determined by the formula
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This parameter increases sharply from 0 to 1 if the chemical potential reverses sign, i.e.
if the electron conceatration r is varied. In order to calculate the value of D*~(k), it is
convenient to introduce the density—density Green function

D¥(x, x') = (T(R,(T)N ())) ©.7)

where N, = F{? + F;°. In the same GRPA as that used in order to derive the expression
(6.2}, we find

Nz x5 (k) N
) = T AL + 0w + e —Jw] & @8
where
25 (k) = [nmo() — 70)/2T16 .0 — TI(K). 6.9)

Now it is easy to obtain expressions for the functions D, and D*~ via the dynamic
magnetic susceptibility (k) and the dielectric susceptibility x™(k):

D (kK)=—x(k) D" (k)= — (k) + 3" (k). (6.10)

Finally, using the relations (5.18), (6.1) and (6.10), we obtain the final expression
for the effective pairing interaction

V(k) = J(k) — 477 (k) Re x(k; 0) — 12 (k) Re x¥(k; 0). (6.11)

This must be substituted into equation (5.17) for the superconducting order parameter.

We quote the necessary information, obtained in [17], about the magnetic sus-
ceptibility. The poles of the function y(k; 0) determine the stability boundary of the
paramagnetic phase with respect to magnetic ordering: ferromagnetic state (F) with
k = 0 and antiferromagnetic state (a) with k = k, = (a, 7, 7r}/a. The phase diagram for
the magnetic phases was constructed on the {x, ) plane [17]. It is reproduced in figure
2 for the sc lattice.
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Magnetic phases occur mainly in the concentration interval § < n < 1. The critical
concentration n, = % corresponds to sign reversal of the chemical potential, thus T=10
and n > n.. In the shaded region of the diagram, the system’s magnetic states are
unknown. It may be a heterogeneous phase consisting of ferro~ and antiferromagnetic
phase regions, as was shown, for example, in the limit of small hole concentrations,
(1-n)<1.

The formula (6.2) for the magnetic susceptibility is valid in a wide concentration
interval; the only exceptions are the vicinities of n = 0 and n = 1, where one must use
the gas approximation for electrons or holes.

We note that near the intercept of the boundary lines of the A and F phases (for the
sc lattice, the point of intersection, n, is 0.91), another magnetic phase can form, which
is neither ferromagnetic nor antiferromagnetic. Since the problem of two interacting
order parameters was not considered, we exclude from consideration the vicinity of this
point. Thus, the right-hand boundary of the shaded region of the diagram determines
the conditional boundary of validity of the expression {6.2).

With T =0 and u > 0, the localized contribution to the bare susceptibility xq(k) in
(6.3) predominates, and the formula (6.2) results in the following expression for the
static magnetic susceptibility:

x(k; 0) = 1/[D(k; 0) + J (k). (6.12)
Near the ferromagnetic instability, the main contribution is made by long-wave fiuc-
tuations, and (6.12) can be written as

x(k; 0) = 1/(orp + Bek?) ap = 9(0; 0) + J(0) (6.13)
where af > 0, 8¢ > 0 and ar is small. Near the antiferromagnetic instability,

x(k; 0y = 1f[aa + Balk — ko)?] ap = Plky; 0) + J (ko).  (6.14)
The last two expressions determine the characteristic sizes k., and k., of the fluctuation
distribution in k-space with

km = (“F/ﬁF)m Koa = (a’A/ﬂA)m- (6.15)

An investigation of the dielectric susceptibility ¥"¥(k), determined in (6.8), shows

that with £ = 0 it has no poles. With k = k;, a poie occurs when

n=088+0.14 k. {6.16)

The existence of this pole indicates the instability of the initial phase with respect to
the formation of charge density waves. However, it is clear from (6.16) that the line of
this instability on the phase diagram (x, r) (see [17]) lies outside the concentration
interval we study, so we can negiect the last term in (6.11). Thus, the first term there
takes into account the mean-field effects while the second term takes into account the
spin fluctuation contribution. We now study the role of spin fluctuations in the formation
of the superconducting state.

7. The role of spin fluctuations in the formation of the superconducting state

We consider the linearized equation (5.17) for the superconducting order parameter

tanh[E(k,)/2T]

ECk,) (7.1)

3
- WE Tk = ke )x(k — Ky; O)A(K,)
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The quantity y(k — k;; 0) has a sharp peak in the vicinity of k — %, = 0 near the ferro-
magnetic transition and a peak in the vicinity of k — k; = k, near the antiferromagnetic
transition. The conditions aF = 0 and &, = 0 should determine the Curie and Néel
temperatures T and Ty, of the magnetic phase transition as functions of the parameters
kandn. Asequations (5.17) and (7.1) use the magnetic susceptibility of the paramagnetic
phase, they are valid for those regions of (x, n, T} parameter space where T exceeds
the magnetic transition temperature; thus, the T, that occur owing to the correlation
mechanism must satisfy the conduction 7, > T (or Ty). For further analyses, we assume
this condition to be valid.

In order to reveal the qualitative role of the fluctuation term in equation (7.1), we
approximate x(k; 0) by a narrow rectanguiar peak of width 2k, with centre at &k = 0 if
the system lies near the ferromagnetic transition, and by a peak of width 2k, with
centre at k = kj if the system lies near the antiferromagnetic transition. The quantities
knand k, , are viewed assmall as desired, in order to neglect the momentum dependence
of J(k — k,)in the second termin (7.1). This is possible because the quantity y(k — k;; 0
determines, in fact, the momentum distribution in space. So we can bring the quantity
JX(k — k,) outside of the summation for this quantity to have a zero argument. The result
is an integral equation with a fluctuation term whose kernel is localized in k-space.

We sstart by examining the case where the system is near the ferromagnetic instability.
In the second term in (7.1), the main contribution to the sum over k; comes from the
narrow shell near the Fermi surface with width 2k,;. In this situation, taking into account
the kernelJ(k — k) factorization for the sc lattice (see (4.6)) in the first term, the integral
equation (7.1) can be reduced approximately to a system of algebraic equations. To this
end, we rewrite (7.1) as

A(k) = 2xt 2, cos kg Ag — ¥xtz/a)B (7.2)
[
where the notations are
Ag =%,§, cos kg ﬁ(kl)ﬂggll))ﬂ (7.3)
1 tanh[E(k,)/2T]
TNZ A Ty 7H

The prime over the last sum means summation over the narrow shell near the Fermi
surface of width 2k,,. Excluding the quantity B in (7.2), we obtain the following system
of equations for A,:

3 tr2z? FF
) 5 (7.5)

A, = 21(% (Kwﬁ T 16 ap 1+ 852 )% 4

Here the following notations are introdisced.:

1l ocosk,cosk E(k) _2 < y(k) E(k)
Kc,ﬁ=2:ﬁ§k) 2E® ﬂtanh(ZT) F—BNZk)—E(k)tmm(—zT) (7.6)
_Aler vl (ER) _ylyr 1 E(k)
@—3N§kl E(k)tanh(z,[,) @_2¢N§ E(k)tanh(ZT). (7.7)
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Equating to zero the determinant of the system (7.5) leads to two equations for T, for s
and d symmetries of the order parameter. In the case of s symmetry the equation reads

tanh[E(k)/2T]

1
=2t 2 By (0~ vert0] — g9

(7.8)

where
: gmzzz %
T8 ap 1+ ae)e

The equation for T, for d symmetry coincides with equation (4.7) of the mean-field
approximation, because the fluctuation contributions cancel ont in this case, This result
for the d symmetry is a consequence of the fact that the magnetic susceptibility in the
second term of (7.1) is approximated by a very narrow peak.

The quantities F and ‘G are positive with eg > 0; thus, the factor »,, which defines the
intensity of the fluctuation contribution to the pairing interaction, is also positive, It is
clear from equation (7.8) that fluctuations suppress superconductivity. As the ferro-
magnetic transition is approached ar— 0 and v, increases, but the increase of v, is
limited by the denominator in the expression (7.9). In the limit ag— 0, », reaches a
maximum value:

Vemax = F/G = (n —1)/(1 — n/2). (7.10)
To obtain the last expression, we use the relations
G =dtpy(£r) InQywn/aT.)  F =Eeppo(&r) nQ2ywn/aT,) (7.11)

in which py(¢) is the electron density of states in the bare band, & = {1 ~ n/2)"!, and
the Fermi energy [8] is

er = W(En — 1) (7.12)

where W = 2ztis the width of the bare band. In the concentration interval § < n < 1 with
£r > 0, v, varies from O to 1.

We now consider the system near the antiferromagnetic trapsition, when x(k; 0) has
a sharp maximum in the vicinity of k = k. Since the susceptibility here is centred at the
point kg, we arrive at the result that if the momentum £ in the second term of equation
(7. 1) liesinthe narrow laysi nsar ihe Fermisurface of width 2k, 4, then this layer contains
the vector &, + kg rather than the momentum k,, in contrast with the ferromagnetic
instability case. Put another way, the vector k, lies in the layer near the Fermi surface,
which is displaced by the vector k. In the final analysis, this leads to sign reversal of the
fluctuation term in the equation for T :

LS

R (£

1 ) a tanh{E(k)/2T.)
= 2Kt — ) ——rt— .
b= 2x 5 2 [y ) + v ) — s (7.13)
The fluctuation contribution intensity is determined by the factor
3 k222 FA
A = - — R
Y T3 oy 1+ 8022 e, )8 (7.14)
where
1! tanh{{(1 —n/2)e(k) + u]/2T,
gr LS g o= /266 + w)/27.) .19

N7 (1= n/2)e(k) + p

We obtain a similar result for ‘¢*. The prime means that the summation in (7.15) is
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performed over a narrow layer near the Fermi energy of width 2k, ,. Integrating over
energy, we find

_28-1 0 1 wa
T 3(1—-n/2)? T 6(1-nf2)? e

These formulae are obtained in a model with a constant density of states. p(¢) = 1/W.
The quantity w,, = vpkya is the limiting frequency of the spin fuctuation spectrum {(vg
is the electron velocity on the Fermi surface). In deriving formulae (7.16), we assume
that &p 2 @y,.

We see that the antiferromagnetic fluctuations bring about an additional electron
attraction; however, the fluctuation contribution intensity »2* is also limited, because of
the denominator in the expression {7.14), From (7.14) and (7.16), we arrive at the result
that

FA (7.16)

vh . =40 - Deg/oy (7.17)

so vA ., lies in the interval from 0 to 2ex/wy,.
With the d symmetry of the order parameter, the fluctuation contribution in the
equation for T, cancels out, too, just as in the case of an antiferromagnetic instability,
Equations (7.8) and (7.13) can be explicitly solved for T, if the rectangular band
model with constant density of states is used. In the logarithmic approximation, we have

Y o B (1—-n/2)* )

7. =L on(1 - )W esp ( TS ) (7.18)
The ‘—’ sign in the denominator corresponds to ferromagnetic instability, the ‘+’ sign
to antiferromagnetic instability. Near the left-hand and right-hand boundaries of the
concentrationinterval ¥ < n < 1, T, is small; the expression (7.18) has a maximum inside
this interval. In the physically interesting case of the antiferromagnetic instability, T,
may be sufficiently great inside this interval, because of the large pre-exponential factor.
However, the fluctuation part of the pairing interaction cannot be greater than 1, because
of the small parameter k.

It is clear from the formula (7.18) that 7, in a narrow concentration interval is very
sensitive to the quantity v, and can reach values of ~(1073 to 10~%)W, with the values of
v, not exceeding 1, Near the ferromagnetic instability, T, is several orders of magnitude
lower. The formuia (7.18) defincs the tendency of T, to increase sharply with increasing
concentration 7 and fluctuation contribution intensity v,.

Recall also that the formula (7.18) for T, does not take into account the contribution
of the kinematic mechanism [8]. The authors of [8] think that this contribution is
dominant (only for the s symmetry order parameter; in the case of d symmetry, the
fluctuation contribution cancels out in the equation for T,). In our view, the kinematic
mechanism is overestimated in [8, 9], because these authors did not take into account
the fiuctuation effect in the consideration of the kinematic term in perturbation theory.
It is known that the Hubbard model in the limit I/ — « indicates strong tendencies for
ferromagnetic ordering, tendencies that must weaken the pairing effect of the kinematic
mechanism. Allowance for the corresponding fluctuation corrections (at least in the
limit {7 — @), which are contained in the part Hy;, of the Hamiltonian, is a separate, very
complicated, problem of the competition between the ferromagpetic and supercon-
ducting order parameters.

Now we pass on to the case of a d symmetry order parameter. Since in the limit of a
verynarrow peak in y(k; 0), the fluctuation contribution has cancelled out in the equation
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for T, we need to weaken this condition and thus preserve the momentum dependence
of the quantity J%(k — k,) in the next term of equation (7.1). For the sc lattice, this
leads to the following approximate equation for T, (in the case of antiferromagnetic
instability):

=2 X [1+vir(cos k, +cosk,)+ vl cos k,Jpi(k) _*__tanh[E(k)/zTc]'
Nk ’ E(k)

The resulting equation contains two parameters characterizing the fluctuation con-
tribution intensities:

(7.19)

vity 1 <’ (cosk,+cosk, tanh[ E(k + ko)/2T.]
{ui!ﬁ }—6(:«)2 X,% .{COS . }w%(k)x(kp—k;o) BT ko) (7.20)
where
E(k + ko) = — (1 — n/2)e(k) ~ u. (7.21)

(In the paramagnetic phase of a metal, the z dimension differs in the basis function y,(k)
of the superconducting order parameter.) The summation in (7.20) is limited by the
layer near the Fermi surface of width 2k, ». The factors cos &, w3 (k) can be transformed
into the product of d symmetry basis functions constructed on sites that follow the first
coordination sphere. We can pass from equation (7.19) to equation (4.7) by neglecting
basis functions of the d-like state.

The calculation of T, from equation (7.19} demands numerical computations, as in
the case of the mean-field approximation. In such computations, it would certainly be
better to use the more general equation (7.1) rather than equation {7.19), in which rough
approximations were made. To us, it was important to solve the question concerning
the d state in principle and to see that in this case also the spin fluctuations lead to an
increase of T, (¢4 > 0 and vi* > 0 with & > 0).

8. Conclusions

Let ussum up some results of the investigation. In conirast tc the case of a weak Coulomb
interaction [3], two contributions to the electron pairing interaction arise in the (=)
model. The first contribution is of a statistical nature and is allowed by the mean-field
approximation. The other contribution is a dynamic one and occurs owing to the
interaction of electrons with spin fluctuations. In some regions of electron concen-
trations, the fluctuation contribution may be sufficiently large. It increases sharply near
the magnetic phase transitions and, in the case of a ferromagnetic instability, luctuations
cause an electron repulsion; in the case of an antiferromagnetic instability, they cause
an attraction, as was the case in the regime U < 1.

Although the equations for a superconductor are derived in the spirit of strong-
coupling theory [14], we consider the weak-coupling limit only in order to obtain
analytical results, in which the equation for the superconducting order parameter
reduces to the equation of the BCS theory with a strong momentum dependence of the
electron pairing matrix element. Within the framework of this approximation, we
have derived equations and formulae for ¥.. The general equations obtained for a
superconductor are in the spirit of the theory of strongly coupled superconductors with
bare electron—boson vertices. A more accurate equation is
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z= 5 y (8.1)

for it has exact electron-boson vertices. However, using the above vertices in equation
(7.1) is a very complicated problem. Generally, a number of questions touched upon in
the paper remain open, because they demand numerical solutions of the equations
obtained here and in [17]. These aspects include the concentration dependence and the
value of T in real cases, where y(k; 0) cannot be approximated by a narrow peak. Other
problems are the calculation of the Curie temperature Ty and the Néel temperature Ty
with respect to the parameters x and n, and a comparison with the values of T,. Only
such numerical analyses permit one to find such regions on the (x, ») plane where T,
greatly exceeds Ty and Ty, and where the developed theory can be applied.

Other important issues in the problem of superconductivity in a strongly correlated
systeminclude the question about the damping of electron states formed by the Hubbard-
1 approximation. In a model with localized magnetic moments (s—d exchange modet),
such damping causes a strong suppression of the magnetic moment in the paramagnetic
phase of a metal. The problem is to ascertain the role of electron damping due to real
processes of electron-spin fluctuation interaction in a superconductor with a pairing
interaction via virtual exchange by spin fluctuations. The general investigation that we
have carried out in this paper gives hopeful predictionsin the question of the possible role
of spin fluctuations in the formation of high-T, superconductivity in strongly correlated
systems.

Note added in proof. Some problems listed in section § have been resolved by us and will be published. More
accurate use of the GRPA approximation results in the essential renormalization of the vertices when parameter

Jin leading terms is replaced with ¢,
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